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Abstract

Metallic honeycombs exhibit microstructural heterogeneity under large deformation which presents a challenge to

the development of mechanical models of the material using classical continuum mechanics. In order to gain insight on

this problem, numerical multiaxial experiments are performed on a virtual honeycomb specimen (VHS). This involves a

detailed finite element model that represents the plate-like honeycomb microstructure with three-dimensional shell

elements obeying an elastic–plastic constitutive law. The VHS is subjected to large combined compressive and shear

loading along its tubular direction in displacement-controlled simulations under quasi-static conditions. The observed

deformation mechanisms that include plastic collapse and the formation of folding systems are analyzed at the

microstructural level and their effects on the mechanical responses at the macroscopic level are discussed in-depth.

Mathematical expressions of the characteristics of the folding systems, namely: folding planes, folding directions, hinge

line orientations, and compatibility zones are developed and used to determine representative measures of micro-

structural deformation. An elliptic macroscopic plastic collapse envelope of the honeycomb is analytically and

numerically evaluated, while closed-form expressions of compressive and shear strengths are presented. A linear

crushing envelope defines the post-collapse behavior. The direction of inelastic deformation is found to be parallel to

that of the macroscopic compressive principal stress. This study reveals that the constitutive behavior of metallic

honeycombs beyond the elastic regime is controlled by folding systems.
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1. Introduction

Honeycombs are composed of a network of joined parallel tubes. The mechanical properties of a

honeycomb depend on the geometry of the cross-section of the elementary tube, its base material and the
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joining technique employed. Here, we focus on thin-walled hexagonal metallic honeycomb. That is, the

elementary tubes have a hexagonal cross-section with cell walls made of a thin metallic foil.

When investigating the mechanical behavior of a honeycomb, it is useful to distinguish between the

microstructural and macroscopic levels. At the microstructural level, we consider the discrete cellular
structure of a honeycomb and discuss its deformation patterns and the stress distribution within the cell

walls. At the macroscopic level, we consider the honeycomb as a homogeneous fictitious material, where the

response is described in terms of macroscopic stresses and strains. Various relationships between micro-

structural and macroscopic properties have been established in the past. Examples are the macroscopic

elastic moduli that may be directly determined from the Young�s modulus of the cell wall material and the

specific cell wall geometry. A comprehensive summary on the mechanical properties of honeycombs is given

in the textbook by Gibson and Ashby (1997).

Not much is known about the response of a metallic honeycomb to large out-of-plane loading. This
type of loading involves a combination of normal and shear loading along the tubular direction of the

honeycomb. It is typical for honeycombs because they are frequently used as core materials in sandwich

structures. Experiments on aluminum honeycomb reveal the highly complex microstructural processes

governing the mechanical response: formation of elastic buckles, plastic collapse of cell walls, evolution

of deformation-induced imperfection fields, propagation and nucleation of plastic hinge lines, stretching

and folding of cell walls (Doyoyo and Mohr, 2003; Mohr and Doyoyo, 2003, 2004). Finite element

simulations of the microstructural response of a honeycomb have proven to be a powerful means to

investigate the mechanical behavior of cellular materials. Grediac (1993) studied the height dependency
of the shear modulus using a three-dimensional finite element model of a honeycomb cell; Xu and Qiao

(2002) employed a periodic unit cell finite element model in their study on the skin effect. The dynamic

in-plane response of elastic–viscoplastic polycarbonate honeycomb was modeled by Papka and Ky-

riakides (1999) using two-dimensional beam models. This modeling technique was later adopted by

H€onig and Stronge (2002) to study the effect of local inertia in aluminum honeycomb at high strain

rates.

Here, we go one step further and perform a non-linear three-dimensional finite element analysis of a

honeycomb microstructure. Our objective is to gain further insight on the deformation mechanisms at the
microstructural level as large macroscopic out-of-plane displacements are applied. The core of the present

study is the �virtual honeycomb specimen (VHS)� that represents the honeycomb microstructure discretized

by 3D-shell elements with an elastic–plastic constitutive law. The simulations represent the biaxial testing of

a honeycomb in its sandwich configuration. Displacement-controlled simulations are performed for various

combinations of normal and shear loading. The results reveal that the cell walls of the honeycomb

microstructure fold in deformation-induced folding systems. The three characteristics (i) folding plane, (ii)

folding direction and (iii) hinge line orientation are identified for various folding systems. At the macro-

scopic level, an elliptic plastic collapse initiation envelope is found along with a linear post-collapse
envelope that characterizes the crushing regime.
2. Virtual experiments

2.1. Material

The microstructural geometry and cell wall material properties of the VHS are chosen according to a

standard commercial honeycomb. The characteristic cross-section of the honeycomb is shown sche-

matically in Fig. 1(a). It has a hexagonal cellular microstructure with a wall thickness of t ¼ 33 lm,

an expansion angle of h ¼ 40�, cell wall widths l ¼ 3:1 mm and h ¼ 2:4 mm, and a relative density
of q=q0 ¼ 1:8%. The width to thickness ratios of the cell walls are l=t � 94 and h=t � 73 for the
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Fig. 1. (a) Honeycomb geometry in the L–W -plane; the dashed rectangle shows a part of the microstructure that is represented in the

VHS; (b) extraction of a microtensile dogbone specimen from the honeycomb microstructure.
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single-thickness walls, and l=2t � 47 and h=2t � 36 for the double-thickness walls. Dogbone specimens with

a gage width of 1 mm are extracted from the cell walls of a real honeycomb (Fig. 1(b)) and tested in a force-

controlled microtensile testing device (Gudlavalleti, 2002). The cell wall material (aluminum 5056-H39 foil)

exhibited an ideal plastic response at a constant engineering stress of ~ry ¼ 265 MPa; fracture occurred at

an engineering strain of about 8% (Ames, 2003).

2.2. Specimen

Fig. 2(a) shows the section of the honeycomb microstructure represented by the VHS. The VHS was

lW ¼ 38 mm wide and C ¼ 7:5 mm high, which corresponded to a width to height ratio of lW =C ¼ 5. We

make use of the microstructural periodicity along the L-direction and restrict our model to a representative

band of width lL ¼ hþ l sin h ¼ 4:4 mm along the L-direction (Figs. 1(a) and 2(a)). Symmetric boundary

conditions are applied to the boundaries in the L-direction (Fig. 3(b)), which, at the macroscopic level, may

be interpreted as a plane strain condition along the L-direction. All degrees of freedom are restricted at the
bottom of the specimen, whereas a homogeneous displacement field ðuW ; uT Þ is prescribed at the top

boundary (Fig. 3(a)).

The width to height ratio affects the overall homogeneity of the stress field along the W -direction. This

ratio should be as large as possible. The results of simulations using larger specimens (e.g. lW ¼ 76 mm)
Fig. 2. (a) Schematic of the microstructure of the VHS; the thick walls are aligned with the L-direction; (b) details of the FE-

discretization with shell elements; the intersection between the flat walls is labeled as �intersection line�.



Fig. 3. Boundary conditions of the FE-model of the VHS. hi and ui denote the rotational and translational degrees of freedom of the

shell element in the global coordinate system respectively: (a) side view, (b) top view.
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showed the same deformation mechanisms as those of the present specimen. The quantitative effect on the
macroscopic stress levels was typically less than 5%. The choice of the specimen height has an influence on

the macroscopic strains defined below, which results in a size dependency of the normalized response

curves. An investigation of this effect is left to future studies. The present specimen height is chosen such

that the governing deformation mechanisms observed are representative of honeycomb specimens with

C > 7:5 mm.

2.2.1. Details of the FE-model

(i) Spatial discretization of cell wall geometry with 53,700 four-node shell elements (Belytschko-Tsay for-
mulation, reduced in-plane integration, 5 integration points through cell wall thickness, active hour-

glass control); this corresponded to an average element side length of 0.1 mm (see detail in Fig.

2(b)); the mesh of the perfect cell wall geometry is generated using the HYPERMESH preprocessing

software. Next, the shape functions of the lowest elastic buckling mode under compressive loading are

computed with ABAQUS/standard (Abaqus, 1999). Based on the shape of this buckling mode, an

�imperfect mesh� is generated and used for the subsequent non-linear analysis. The initial imperfections

introduced are of the order of the cell wall thickness.

(ii) Explicit time integration of the non-linear problem using the LS-DYNA v960 solver (Hallquist, 1999);
by means of automatic density scaling, 200,000 constant time steps of Dt ¼ 2:5 ns are performed to

linearly apply a total displacement of u ¼ �5 mm under a predefined loading angle a (Fig. 3(a)); prob-

lem time and time step are carefully chosen such as to guarantee quasi-static loading conditions. This

requirement is verified at the macroscopic level by ensuring the kinetic energy to be small as compared

to the strain energy.

(iii) The cell wall material is represented by a phenomenological J2-plasticity model with multilinear iso-

tropic hardening.

(iv) Penalty formulation for possible cell wall contact; the shell thickness is considered for contact, but
thickness changes are neglected.

(v) The resultant force vs. problem time signals at frequencies above 4000 Hz are cut-off using a standard

SAE-filter.
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2.2.2. Limitations

Besides well-known limitations of the mathematical model and its finite element solution, two physical

limitations shall be noted:

(i) The double-thickness cell walls in a real honeycomb are typically made of two single-thickness cell walls

that are bonded together. Thus, given the finite strength of the thin adhesive bond in a real honeycomb,

total or partial delamination may occur between adjacent cell walls. However, due to the lack of reliable

modeling technique for delamination, simulations are carried out for a monolithic honeycomb, where

the double-thickness walls are represented by a single shell element layer of double thickness.

(ii) Cell wall fracture is not included in the model.
2.3. Experimental program

Simulations are performed under various loading conditions. The combined normal and shear dis-

placement loading on the top boundary is characterized by the biaxial loading angle a and the resultant

displacement u (Fig. 3(a)). With the exception of the simulation for �pure shear� loading, the biaxial loading
angle is kept constant for individual simulations while a maximum resultant displacement of u ¼ �5 mm is

applied. In terms of normal and shear displacements, uT and uW , we have:
uT ¼ u sin a; ð1Þ
uW ¼ u cos a: ð2Þ
Furthermore, we introduce the macroscopic normal and shear strains, e and c, by normalizing the dis-

placements with respect to the specimen height C:
e ¼ uT
C

; ð3Þ
c ¼ uW
C

: ð4Þ
The macroscopic strain path is linear and defined by the tangent of the biaxial loading angle: e ¼ c tan a.
Displacement-controlled simulations are performed for biaxial loading angles of 0�, 10�, 20�, 30�,40�, 50�,
60�, 70�, 80� and 90�. The corresponding strain paths are shown in Fig. 4.

The resultant force components acting on the top boundary, FW and FT , were written as ascii output

from each simulation. The macroscopic shear and normal stresses s and r are calculated from the total
forces that act on the specimen:
r ¼ FT
A0

; ð5Þ
s ¼ FW
A0

; ð6Þ
where A0 ¼ lW lL is the cross-sectional area of the VHS. Under pure shear loading, we apply the shear
displacement along the W -direction and impose the force boundary condition FT ¼ 0 along the T -direction.
As a result, a non-linear strain path is observed (Fig. 4).



Fig. 4. Strain paths for the biaxial numerical experiment on the VHS.
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3. Results and analysis

3.1. Overview

A summary of all normal stress vs. normal strain curves and all shear stress vs. shear strain curves is

given in Figs. 5 and 6, respectively. The curves are remarkably similar to previous experimental results

(Mohr and Doyoyo, 2004). A pronounced initial peak stress is observed in the normal stress–strain curves,

denoting plastic collapse of the microstructure. After initial collapse, the following observations are

noteworthy:

(i) All curves are in hierarchical order: with the exception of the results for pure shear, neither the normal

nor the shear stress–strain curves intersect. From small to large loading angles, the normal stress level

increases, whereas the shear stress level decreases.

(ii) Macroscopic tensile stresses develop for loading angles below 40� (Fig. 5). This may be explained by

Fig. 4. The curve for pure shear represents the strain path for r ¼ 0. As a first approximation, tensile

stresses develop when the magnitude of the compressive normal strain applied is smaller than the cor-

responding normal strain for pure shear.

(iii) As normal tensile stresses develop, the corresponding shear stress–strain curves typically exhibit signi-
ficant hardening (see 0�, 10�, 20�, 30� in Fig. 6).

(iv) The curve for pure shear shows a more or less constant stress level (Fig. 6). It separates the shear

stress–strain curves into two groups: Those comprising strain hardening lie above; the curves for large

loading angles (a > 40�) lie below.

(v) For large loading angles and large normal strains (e < �0:1), an almost constant plateau stress is ob-

served in the normal stress–strain curves. This regime is labeled �crushing� in Fig. 5.



Fig. 6. Macroscopic shear stress–strain curves at different loading angles.

Fig. 5. Macroscopic normal stress–strain curves at different loading angles.
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In the present study, we focus on the behavior under combined compressive and shear stresses with

practical applications in mind. For clarity of our discussion, we emphasize the naming of the different parts

of the honeycomb microstructure (Fig. 2): The single-thickness walls are referred to as thin walls, the



3360 D. Mohr, M. Doyoyo / International Journal of Solids and Structures 41 (2004) 3353–3377
double-thickness walls, all aligned in L-direction, are referred to as thick walls. The line joint between thick

and thin walls is called the intersection line. Among the output quantities at the microstructural level, we

frequently refer to the internal energy density. The internal energy density represents the plastic dissipation

per unit volume in a shell element. By contrast to strain or stress components, it is calculated as the mean
over the volume of the shell element and thus, independent of the shell thickness coordinate. As a reference,

the value of internal energy density at 8% axial strain during uniaxial compression of Al5056-H39 is 21.2

mJ/mm3 which corresponds to a specific energy absorption of 7.8 J/g (which is calculated as the internal

energy density divided by the mass density of the cell wall material).

3.2. Onset of plastic collapse

With the exception of 0� loading, all macroscopic normal stress–strain curves show a monotonically

increasing macroscopic stress until a pronounced peak stress is reached and the stress level drops. We

labeled this point as �plastic collapse� in Fig. 5. Careful examination of the von Mises stress distribution in

the mid-plane of the thin cell walls provides further insight (Fig. 7(a)–(f)).

Under uniaxial compression, the maximum peak load is reached as plastic yield occurs along the

intersection lines (Fig. 7(f)), depicting the von K�arm�an theory of the strength of thin plates under load (von
K�arm�an et al., 1932). Prior to plastic collapse, elastic buckles form and grow in the honeycomb micro-

structure, which results in the unloading of cell wall centers and the concentration of stress at the inter-

section lines. Note from Fig. 7(f) that the membrane stresses are almost zero in the center of the deflected

cell walls, whereas the yield stress (~ry ¼ 265 MPa) is exceeded at the intersection line.

For pure shear loading, the microstructural stress distribution prior to collapse is fairly uniform (Fig.

7(a)) confirming the derivations by Kelsey et al. (1958). In terms of principal stresses, a state of pure shear

can be transformed into a state of combined compressive and tensile stresses of equal magnitudes. How-

ever, after elastic buckling, the thin walls are relieved of the compressive principal stress, while the com-
pressive principal stress in the thick walls increases. The difference, as compared to the von K�arm�an
mechanism under uniaxial compression, is that the buckling-related microstructural load-redistribution

occurs from thin walls to thick walls rather than from wall center to the intersection lines. As a result, the

stress state in the buckled thin walls under macroscopic pure shear loading is almost free of stress con-

centrations. Microstructural yield occurs first within a narrow band, but the stress level in the entire thin

walls is close to yield (Fig. 7(a)).

Fig. 7 also shows the von Mises stress distribution for other loading angles. Clearly, transition from a

shear-type homogeneous collapse mechanism to a normal loading dominated non-homogeneous von
K�arm�an collapse mechanism is observed.

3.3. Softening regime: folding system activation

Beyond the initial peak in the macroscopic stress–strain curves, a pronounced softening regime is ob-

served. Fig. 8 shows a sequence of deformed microstructures that are observed during this regime for 90�
loading. As outlined by McFarland (1963), the monolithic thin-walled honeycomb microstructure develops

folds to accommodate the applied macroscopic displacement. The development of the first fold takes place

in the softening regime, which leads to the activation of so-called �folding systems� (Mohr and Doyoyo,

2004). Folding systems are composed of plastic hinge lines and compatibility zones that allow for the

kinematically admissible folding of the honeycomb microstructure. Hinge lines and compatibility zones

have been highlighted in Fig. 8. Compatibility zones are located at the intersection lines where the kine-

matic compatibility of adjacent folding systems is achieved at the expense of plastic stretching or com-

pression of the cell walls. Observe that the plastic dissipation per unit volume is significantly higher within
the compatibility zones than along the plastic hinge lines. The end of the softening regime is reached as cell



Fig. 7. Contour plot of the von Mises stress in the shell mid-plane of the thin walls at the onset of plastic collapse. Note that the yield

stress of the cell wall material is ~ry ¼ 265 MPa.
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wall contact occurs in the compatibility zones, increasing the load carrying capacity (Fig. 8(d)). At this

point, the thick walls underwent a 90� rotation around the L-axis (Fig. 8(d)).



Fig. 8. Formation of the first fold during 90� loading: (a) u ¼ �0:15 mm [a], (b) u ¼ �0:3 mm [b], (c) u ¼ �0:45 mm [c] and

(d) u ¼ �0:6 mm [d]. The letter in square brackets denotes the data point on the 90�-stress–strain curve in Fig. 5.
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The development of folds is the natural response of prismatic thin-walled structures to large compressive

loads. Compressive stresses concentrate along the intersection lines where the structural deflection of the

thin cell walls is prohibited by the lateral support of the adjacent cell walls. In the center of a cell wall

however, large deflections occur and the remaining membrane stress state is predominantly that of uniaxial

tension. To illustrate, the membrane stress state in the mid-plane of the cell walls is visualized by the vector

field of the principal stresses in each four-node element (Fig. 9(a)). Clearly, the stress state corresponds to
uniaxial tension along the hinge lines, with the maximum principal stress acting perpendicular to the

bending direction. This stress component is due to the circumferential stretching associated with the

deflection. The region between the two hinge lines is almost free of stress, whereas compressive stresses are

observed in the highly deformed compatibility zones. Similar observations are made for various combi-

nations of combined macroscopic compressive and shear loading. The main difference is the orientation of

the hinge lines within a folding system.

Consider the limiting case of pure shear next. The schematic in Fig. 10 shows a possible mechanism for

pure shear deformation. According to this mechanism, the thick cell walls are bent without any stretching
whereas the thin walls are bent and sheared at the same time (Fig. 10(b)). However, as discussed above, in

terms of principal stresses, shearing of a thin-wall by itself also implies compression and thus causes the

formation of folds. Fig. 11 shows the sequence of deformed microstructures in the softening regime for pure

shear. Dashed lines are used to establish the link to the schematic in Fig. 10. Initially, local shear buckles

emerge (Fig 11(a)), then transform into deeper shear folds (Fig. 11(b) and (c)) until they become dominant

and determine the characteristic hinge lines of the folding system for pure shear loading (Fig. 11(d)). Cell

wall contact occurs at the end of the softening regime. The principal stress state corresponding to con-

figuration (c) is shown in Fig. 9(b). Even more dramatically than during 90�-loading, the membrane stress
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Fig. 10. A schematic of the shear mechanism (a) 3D view, (b) view from the top of the view in (a). The dashed rectangle shows the

shape of the thin wall after bending without shearing.

Fig. 9. Principal stress states in the shell mid-surface: (a) at u ¼ �0:45 mm during 90� loading, (b) at u ¼ �1:05 mm during pure shear

loading.
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Fig. 11. Formation of the first fold during pure shear loading: (a) u ¼ �0:45 mm [a], (b) u ¼ �0:75 mm [b], (c) u ¼ �1:05 mm [c], and

(d) u ¼ �1:65 mm [d]. The letter in square brackets denotes the data point on the stress–strain curve for pure shear in Fig. 6.
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state in the mid-plane is characterized by uniaxial tension parallel to the hinge lines. Furthermore, note that

according to the schematic in Fig. 10(b), it is the diagonal of the conceptually sheared cell wall that

experiences the largest stretch. Consequently, the hinge lines are more or less parallel to this diagonal (Fig.

11(c)).

The microstructural behavior in the softening regime during 50�, 60�, 70� and 80� loading may be ex-

plained by the same mechanisms. The major difference is the orientation of the hinge lines within the
characteristic folding system. Fig. 12 shows the formation of the first fold during 60� loading. Note that

the upper hinge line is inclined at a well-defined angle with respect to the W –L-plane, but still parallel to the

most stretched fiber in the folding microstructure.
3.4. Crushing regime: progressive folding

Progressive folding is the dominant microstructural deformation mechanism in the crushing regime. At

the same time, the macroscopic stress fluctuates around an almost constant stress level. The progressive

folding of honeycombs under uniaxial compression was investigated by various authors and is well

understood (McFarland, 1963; Wierzbicki, 1983). With the formation of the first layer of folds, significant

imperfections emerge in the vicinity of the first fold (Mohr and Doyoyo, 2003). As a result, the activation
threshold for subsequent folds is reduced, which allows for the formation of subsequent folds at a stress

level below the initial collapse stress. Fig. 13 illustrates a side view of progressive folding under uniaxial

compression. Note the intense localization of deformation within the microstructure. The honeycomb folds

layer by layer, thereby transforming the microstructure from its uncrushed configuration to its crushed



Fig. 12. Formation of the first fold during 60� loading: (a) u ¼ �0:3 mm [a], and (b) u ¼ �0:9 mm [b]. The letter in square brackets

denotes the data point on the stress–strain curves for 60� loading in Figs. 5 and 6.
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configuration. During 90� loading, the folds pile up along the T -direction. A vertical cut through the

deformed thin walls confirms this observation (Fig. 16(f)).

Fig. 14(a) shows the deforming microstructure at the end of the softening regime in pure shear. In the

figure, the first column is a 3D-view while the second column is the side view of the deforming micro-

structure. Similarly to the 90� results, the energy dissipation is highly localized within a narrow band in the
microstructure. As anticipated in the mechanism drawn in Fig. 10(a), the top and bottom behave rigidly

and move relative to each other while the microstructure is highly deformed within the localization band. In

the crushing regime, two additional folds form almost simultaneously above and below the first fold (Fig.

14(b)–(d)). At this time, the width of the localization band increases. In other words, the microstructure is

transformed from uncrushed to crushed state. The corresponding cut through the thin walls of the de-

formed microstructure reveals the regular folding pattern in pure shear (Fig. 16(a)). As compared to 90�,
the folds are not piled up along the T -direction but accumulated at a much lower angle. Furthermore, note

that the folds are three-dimensionally arranged in space and do not touch in the cutting plane (Fig. 16(a)).
In a typical side view (second column in Fig. 14), only one fold is seen.

A series of pictures from the 60� simulation shows progressive folding under combined loading. Again,

only one fold is seen from the side (second column in Fig. 15), but the three folds become visible in the



Fig. 13. Deformed microstructure during 90� loading: (a) u ¼ �0:75 mm [e], (b) u ¼ �1:65 mm [f], (c) u ¼ �2:55 mm [g], and

(d) u ¼ �4:35 mm [h]. The letter in square brackets denotes the data point on the stress–strain curve for pure shear in Fig. 5.
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3D-view (first column in Fig. 15). Cuts through the deformed microstructures at u ¼ �5 mm after loading

along various stress paths is presented in Fig. 16. A series of folds is typically aligned along a characteristic

direction. It must be noted that this direction is not monotonically related to the biaxial loading angle. A

full sequence of the cuts throughout loading under 70� is shown in Fig. 17. The first complete fold grows

along the T -direction (Fig. 17(b) and (c)), but rotates during the formation of the subsequent fold (Fig.

17(c)–(e)) until it reaches its final position aligned with the other folds.
4. Microstructural folding systems

It transpires from the simulation results that the honeycomb microstructure deforms progressively

producing a regular folding pattern. Furthermore, it is observed that deformation localizes within the

honeycomb microstructure. Rather than forming a homogeneously deformed microstructure, two distinct

configurations emerge in the honeycomb microstructure: uncrushed and crushed configurations. The

crushed configuration includes the folded cell walls, whereas the uncrushed configuration preserves the
initial tubular microstructure. The transition from uncrushed to crushed configuration is controlled by

the deformation-induced folding systems in the honeycomb microstructure. Microstructural folding sys-

tems are defined as follows.

4.1. Definition

Consider a schematic of the microstructural deformation mechanism under combined loading (Fig. 18).

The top and bottom part of the microstructure are both uncrushed and move relative to each other. At the

same time, the microstructure between the top and the bottom is crushed. Recall that an undeformed

honeycomb is composed of three types of cell walls that may be distinguished in the W –L-plane (Fig. 1(a)):
a thin wall aligned at an angle hI ¼ h with respect to the W -direction (type I), a thin wall aligned at an angle



Fig. 14. Deformed microstructure during pure shear loading: (a) u ¼ �1:65 mm [d], (b) u ¼ �2:55 mm [e], (c) u ¼ �3:45 mm [f], and

(d) u ¼ �4:35 mm [g]. The letter in square brackets denotes the data point on the stress–strain curve for pure shear in Fig. 6. In this

figure, the first column is a 3D-view while the second column is the side view of the microstructure.
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hII ¼ p� h with respect to the W -direction (type II), and a thick wall aligned with the L-direction (type III).

It is postulated that the transformation of an individual cell wall from uncrushed to crushed configuration

is controlled by an associated folding system. Consider the transformation of a type I cell wall (labeled �I� in
Fig. 18(c)). The corresponding folding system is shown in Fig. 19(b). Three attributes define the folding

system:



Fig. 15. Deformed microstructure during 60� loading: (a) u ¼ �0:9 mm [b], (b) u ¼ �1:95 mm [c], (c) u ¼ �3:0 mm [d], (d) u ¼ �4:05

mm [e], and (e) u ¼ �5:0 mm [f]. The letter in square brackets denotes the data point on the stress–strain curve for pure shear in Figs. 5

and 6. In this figure, the first column is a 3D-view while the second column is the side view of the microstructure.
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(i) the folding plane that contains the folds, mathematically described by its normal vector nai ,
(ii) the folding direction ma

i that determines the direction of fold alignment in the T–W -plane, and

(iii) the hinge line orientation, represented by the vector ka
i .

In the above representation, the superscript ð�Þa emphasizes the dependence of a folding system on the

loading angle, whereas the subscript ð�Þi, i ¼ I; II; III accounts for the type of cell wall. In other

words, folding systems are defined with respect to the macroscopic loading direction and with respect to the

cell wall structure. Furthermore, in analogy with crystal plasticity, we may formally introduce the

Burger�s vector of a folding system: ba ¼ kaim
a
i , where kai denotes the folding wavelength as shown in Fig.

19(b).



Fig. 16. Cuts through the folding microstructure in the T–W -plane for various loading angles at u ¼ �5 mm. The vector denotes the

folding direction.

Fig. 17. Cuts through the folding microstructure in the T–W -plane during 70� loading. The normal to the folding plane and the folding

direction are shown in (h).
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(a) (b)

Fig. 19. Microstructural folding system: (a) initial configuration, (b) intermediate configuration.

(a) (b) (c)

Fig. 18. Folding mechanism during combined loading.
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4.2. Evaluation

The folding systems are identified during pure shear, 50�, 60�, 70�, 80� and 90� loading. First, we focus

on the folding systems for cell walls of type I. The vectors ðeW ; eL; eT Þ aligned with the initial orthotropic

axes of the honeycomb microstructure provide the vector basis for the algebraic expressions developed

below. From the cuts through the folded thin walls in the T–W -plane (Fig. 16), we find

½ma
I �T ¼ �½ma

I �W tan ba (the square bracket with subscript denotes the component of a vector); the angle ba is

defined in Figs. 16(e) and 20(b) as the angle between the folding direction and the W –L-plane. Thus, the
vector indicating the folding direction reads



Table

Measu

a½��
Pure

sh

50

60

70

80

90

a a ¼

(a)

(b) (c)

Fig. 20. Kinematics in a folding system.
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ma
I ¼ cos baeW � sin baeT : ð7Þ
Next, consider the projections of the vector ka
I on the same plane (e.g. Figs. 14(d) and 15(e)). Here, we

have ½ka
I �T ¼ �½ka

I �W tanwa as can be seen in Fig. 20(b). Furthermore, the projection on the L–W -plane
requires ½ka

I �L ¼ ½ka
I �W tan h (Fig. 20(a)). Thus, we have
ka
I ¼

eW þ tan heL � tanwaeTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 hþ tan2 wa

p : ð8Þ
Since both unit vectors, ma
i and ka

i , are situated in the folding plane, we can calculate the normal vector:
nai ¼
ma

i � ka
i

kma
i � ka

i k
: ð9Þ
The measurements of the angles ba and wa along with the components of the vectors ma
I , k

a
I , and naI for

the folding systems of type I cell walls are summarized in Table 1. For the folding systems of type II cell

walls, we have
1

rements of parameters in the folding systems for type I cell walls

b [�] w [�] ½ka�W ½ka�L ½ka�T ½ma�W ½ma�L ½ma�T ½na�W ½na�L ½na�T Ea
mm Ea

mk

eara
20 12 0.76 0.63 )0.16 0.94 0.00 )0.34 0.34 )0.17 0.93 )0.22 )0.30

17 12 0.76 0.63 )0.16 0.96 0.00 )0.29 0.29 )0.11 0.95 )0.30 )0.30
12 20 0.74 0.62 )0.27 0.98 0.00 )0.21 0.20 0.17 0.96 )0.47 )0.25
7 20 0.74 0.62 )0.27 0.99 0.00 )0.12 0.12 0.27 0.95 )0.65 )0.24
52 10 0.76 0.64 )0.13 0.62 0.00 )0.79 0.61 )0.63 0.48 )0.77 )0.21
90 0 0.77 0.64 0.00 0.00 0.00 )1.00 0.64 )0.77 0.00 )1.00 0.00

45� assumed for kinematic evaluation.
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ma
II ¼ ma

I ;

ka
II ¼ �½ka

I �W eW þ ½ka
I �LeL � ½ka

I �T eT ;
naII ¼ ½naI �W eW � ½naI �LeL þ ½naI �T eT :

ð10Þ
And finally, for the thick cell walls (type III), we have
ma
III ¼ ma

I ;

ka
III ¼ �eL;

naIII ¼ �½ma
I �T eW � ½naI �W eT :

ð11Þ
To quantify the deformation in a folding system, we introduce the measures ½Ea
i �mm and ½Ea

i �mk for the
compressive and shear deformation in a folding system, respectively. First, we calculate the change of

length of the line 1–2 (Fig. 19). Upon evaluation of the kinematic relationships in the T–W -plane (Fig.

20(c)), we can express the relative change of length as
½Ea
I �mm ¼ 1

cos baðtan ba þ tan aÞ � 1: ð12Þ
To measure the shear deformation, we consider the change of the angle / between the hinge line orientation

and the folding direction. In the undeformed configuration, the angle /0 (between points 2, 1, and 4 in Fig.

19(a)) is given by
cos/0 ¼ kaeT ; ð13Þ
whereas for the angle / in the deformed configuration (between points 20, 10, and 40 in Fig. 19(b)), we have:
cos/ ¼ �maka; ð14Þ
which allows us to introduce the measure for shear deformation as
½Ea
I �mk ¼

1

2
cos

/
/0

p
2

� �
: ð15Þ
For the remaining folding systems, we have ½Ea
I �mm ¼ ½Ea

II�mm ¼ ½Ea
III�mm, ½Ea

I �mk ¼ ½Ea
II�mk and ½Ea

III�mk ¼ 0. The

last two columns in Table 1 show the measures of the compressive and shear deformation in the folding

system for type I cell walls. It indicates that the shear deformation within the folding systems decreases as

the biaxial loading angle increases, while the normal deformation increases. The relationship between the

above microstructural deformation measurements and the macroscopic displacement u can be obtained by
integrating ½Ea

i �mm along the folding direction ma
i (Mohr and Doyoyo, 2003).
5. Phenomenology at the macroscopic level

The introduction of folding systems provides a basis for the formulation of mechanism-based consti-

tutive models that shall be developed in the future. At this stage, we determine two phenomenological

envelopes that characterize the macroscopic inelastic response in the normal-shear stress plane.

5.1. Plastic collapse envelope

Recall from our analysis above that elastic buckling dramatically changes the stress distribution in the
cellular honeycomb microstructure and thereby reduces its load carrying capacity. Before we determine the

collapse envelope from a fit to our data, we calculate the theoretical yield envelope assuming perfectly flat
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cell walls. Let the stress state in the thin cell walls (or the microscopic stress state) and the macroscopic

stress state be denoted by ð~r;~sÞ and ðr; sÞ, respectively. Following Kelsey et al. (1958), by assuming a

uniform stress distribution in the honeycomb cell walls, we can relate the microscopic and macroscopic

stresses in the elastic regime as:
~r
r
¼

h
l þ sin h

� �
l
t cos h

2 h
l þ 1

; ð16Þ

~s
s
¼ h

t
þ l

t
sin h: ð17Þ
For the present honeycomb, we have ~r=r ffi 40 and ~s=s ffi 133. Note that the von Mises yield condition

applies at the microstructural level, so that the microscopic yield surface is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 þ 3~s2

p
� ~ry ¼ 0. Substituting

Eqs. (16) and (17) into the yield condition, we obtain the macroscopic yield envelope:
f0 ¼
r
r0

� �2

þ s
s0

� �2

� 1 ¼ 0; ð18Þ
where r0 is the macroscopic yield stress under uniaxial compression and s0 is the macroscopic yield stress

under pure shear:
r0 ¼
2 h

l þ 1
� �

~ry

h
l þ sin h

� �
l
t cos h

ð19Þ
and
s0 ¼
~ryffiffiffi

3
p

h
t þ l

t sin h
� � : ð20Þ
Upon evaluation of Eqs. (19) and (20) for the present honeycomb, we find r0 ¼ 6:6 MPa and s0 ¼ 1:15
MPa. However, the fit of Eq. (18) in the simulation data qualitatively conforms with the elliptic nature of

the data points at the onset of plastic collapse (see Fig. 21), but the magnitudes of the theoretical yield

stresses are higher. From a fit of Eq. (18) into the simulation data, we find r0 ¼ 2:9 MPa and s0 ¼ 0:93
MPa. (Aside: The simulation data points at plastic collapse were determined as the initial peak stresses from
the unfiltered force-time curves. This improves the accuracy of the measurements, while at the same time it

explains some minor difference in magnitude between the peaks shown in Figs. 5, 6 and 21.) The deviation

from the analytical predictions demonstrates the impact of microstructural failure, particularly under

uniaxial compression. In the case of pure shear, microstructural buckling has only little influence on the size

of the elastic domain and Eq. (20) is a reasonable estimate of the macroscopic shear strength. However, the

microstructural load-redistribution under uniaxial compression (discussed in detail in the previous section),

reduces the maximum load carrying capacity by a factor of 2.

A better analytical expression for the macroscopic yield stress under uniaxial compression is obtained by
applying the von K�arm�an model to a honeycomb. Closely following von K�arm�an�s derivation (von

K�arm�an et al., 1932), Mohr and Doyoyo (2003) found the following expression for the macroscopic peak

stress under uniaxial compression:
r0 ¼
3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� m2s Þ
p

ffiffiffiffiffiffiffiffiffi
Es~ry

p
t2

l cos hðhþ l sin hÞ ; ð21Þ
where ms ¼ 0:33 denotes the elastic Poisson�s ratio and Es ¼ 72 GPa the Young�s modulus of the cell wall
material, respectively. Upon evaluation, we find r0 ¼ 2:6 MPa which is close to 2.9 MPa from the simu-

lation.



Fig. 21. Characteristic envelopes in the macroscopic shear stress vs. compressive stress plane.
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5.2. Crushing regime

The concept of a �crushing envelope� was introduced to describe the behavior under combined com-

pressive and shear stresses (Mohr and Doyoyo, 2004). Based on the experimental observation of an

approximately constant stress level in the crushing regime, the macroscopic plateau stresses �r and �s are

defined as
�r ¼ 1

emax � e�

Z emax

e�
rde ð22Þ
and
�s ¼ 1

cmax � c�

Z cmax

c�
sdc; ð23Þ
where the intervals ½e�; emax� and ½c�; cmax� ¼ tan a�1½e�; emax� represent the length of the crushing regime. The

present observation of folding systems in the honeycomb microstructure provides an important argument

as to why both the shear and normal stress levels are roughly constant in the crushing regime: the folding

system that is formed during the softening regime is determined by the biaxial loading angle and hence, as

the biaxial loading angle is kept constant, subsequent folds form in the same folding plane, along the same
folding direction and at the same folding wavelength. In other words, the crushing of the microstructure is a

recurring process and thus, the macroscopic stress response is theoretically periodic over a characteristic

interval De. This characteristic interval may be identified for selected stress–strain curves, but as a first

approximation for the mean stress over the interval De, we integrate along the full strain path in the

crushing regime.

According to our analysis of the stress–strain curves, the crushing regime begins as the compressive stress

reaches its minimum in the softening regime. Based on the results shown in Fig. 5, we chose e� ¼ �0:1 and

emax ¼ umax sin a. (Note that a densification regime follows the crushing regime; however, the densification
regime was not yet reached at the maximum displacement applied in the present simulations.) The corre-



D. Mohr, M. Doyoyo / International Journal of Solids and Structures 41 (2004) 3353–3377 3375
sponding plot of the plateau stress data points ð�r;�sÞ is shown in Fig. 21. The straight line in Fig. 21 shows

the crushing envelope, defined as
Table

Directi

a½��
v½��

The up

macros
a a ¼
fcð�r;�sÞ ¼
�r
�r0

þ
�s
��� ���
�s0

� 1 ¼ 0: ð24Þ
From a fit to the data, we find �r0 ¼ �0:99 MPa for the plateau stress under uniaxial compression and
�s0 ¼ 0:93 MPa for the plateau stress under pure shear.

Next, we suggest a simple expression to describe the relationship between the strain and stress increments

in the crushing regime. The simulations for pure shear indicated that the corresponding strain path is fairly

parallel to the strain trajectory for a ¼ 45� (Fig. 4). In other words, the direction of the strain increment

de=dc appears to be close to the direction of the compressive principal macroscopic plateau stress. For a

macroscopic stress state of combined compression and shear, we have for the angle v between the W -axis

and the direction of the compressive principal stress:
p
4
6 v6

p
2
; �r < 0 : tan 2v ¼

2 �s
��� ���
�r

: ð25Þ
Our hypothesis for the direction of the strain increment reads:
de < 0 : tan v ¼ � dcj j
de

¼ tan a ð26Þ
We tested this hypothesis for other loading angles and found reasonable agreements (Table 2). After

combining Eqs. (25) and (26), we get the following relationship:
n < 0 :
de
dc

¼ �2signðsÞffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ n2

p
� n

; ð27Þ
where n ¼ �r=j�sj denotes the compressive-shear stress ratio in the crushing regime.
6. Comment about the significance of the compatibility zones

The deformation fields in folding systems must satisfy kinematic compatibility with adjacent folding

systems. As a result, characteristic compatibility zones form. Fig. 22 shows two neighboring type I and type
II folding systems in the T–W -plane. The biaxial loading angle was a ¼ 70�. The configuration corresponds

to u ¼ �5 mm, but the microstructural displacements were scaled by a factor of 0.5 to make the presen-

tation more clear. Also, the thick cell walls are not shown. The vertical dashed lines highlight the deformed

intersection lines. Furthermore, we encircled the compatibility zone (labeled CZ 1-2) between the folding

systems (labeled FS-1 and FS-2). With the distance from its boundaries, the microstructural deformation

field in the compatibility zones changes from a plastic bending-dominated regular folding pattern to a

membrane-dominated state of stretched and sheared cell walls. Note from the contour plot that this
2

on of strain increment

45a 50 60 70 80 90

45.0 51.4 61.3 74.3 88.2 90.0

per row shows the biaxial loading angle a, whereas the angle v in the lower row indicates the direction of the minimum principal

copic stress in the crushing regime (both with respect to the W -axis).

45� assumed for pure shear.



Fig. 22. Compatibility zone (CZ) between two adjacent folding systems (FS). Nodal displacements were scaled by a factor of 0.5 and

the intersecting thick wall is not shown to improve the visualization of the folding system at u ¼ �5 mm under 70�-loading. The
contour plot shows the internal energy density.
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transition is accompanied by a dramatic increase of internal energy density. After integrating the internal

energy within the encircled area in Fig. 22, we find that the energy dissipation within the compatibility zone

is about 75% of the energy dissipation in the entire folding system. We note that plastic dissipation in the

compatibility zones between two folding systems i and j depends, among other variables, on the angle

between the normal vectors, nai n
a
j , and the depth of the folds along the normal direction. These variables are

typically used for the analysis of the crushing mechanics of thin-walled prismatic structures under axial

loading (e.g. Wierzbicki and Abramowicz, 1983). Additionally, kinematic incompatibility arises from the

inclination of the hinge lines with respect to the W –L-plane. Here the jump ½uaT � ¼ l tanwa cos h might prove
to be a useful measure (Fig. 20(b)). The in-depth analysis of the compatibility zones is left to future re-

search. Its numerical treatment requires finer meshes along the intersection zones as well as reliable models

to represent delamination between neighboring cell walls.
7. Conclusions

The detailed finite element analysis of the honeycomb microstructure under large biaxial displacement

loading provides important insight into the microstructural mechanisms that determine the macroscopic
behavior. This study reveals that the constitutive behavior of metallic honeycombs beyond the elastic re-

gime is controlled by folding systems. After the plastic collapse of the elastically buckled microstructure,

cell walls are progressively folded in deformation-induced folding systems. The three characteristics of

folding systems––folding plane, folding direction and hinge line orientation––were identified for various

biaxial loading angles. In analogy with crystal plasticity, a mathematical formalism was introduced and

used to measure the localized deformation. An elliptic envelope in the macroscopic normal vs. shear stress

plane describes the onset of plastic collapse, while a linear envelope characterizes the crushing regime.

Furthermore, the direction of inelastic deformation is found to be parallel to the macroscopic compressive
principal stress.
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